A variant of Chebyshev inequality with applications

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NORM INEQUALITY FOR CHEBYSHEV CENTRES

In this paper, we study the Chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. In particular, we prove that if T is a remotal subset of an inner product space H, and F is a star-shaped set at a relative Chebyshev centre c of T with respect to F, then llx - qT (x)1I2 2 Ilx-cll2 + Ilc-qT (c) 112 x E F, where qT : F + T is any choice functi...

متن کامل

Extensions of Chebyshev inequality for fuzzy integral and applications⋆

The theory of fuzzy measures and fuzzy integrals was introduced by Sugeno [24] as a tool for modeling nondeterministic problems. Sugeno’s integral is analogous to Lebesgue integral which has been studied by many authors, including Pap [18], Ralescu and Adams [19] and, Wang and Klir [25], among others. RománFlores et al [9, 20–23], started the studies of inequalities for Sugeno integral, and the...

متن کامل

a norm inequality for chebyshev centres

in this paper, we study the chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. in particular, we prove that if t is a remotal subset of an inner product space h, and f is a star-shaped set at a relative chebyshev centre c of t with respect to f, then llx - qt (x)1i2 2 ilx-cll2 + ilc-qt (c) 112 x e f, where qt : f + t is any choice function s...

متن کامل

Results of the Chebyshev type inequality for Pseudo-integral

In this paper, some results of the Chebyshev type integral inequality for the pseudo-integral are proven. The obtained results, are related to the measure of a level set of the maximum and the sum of two non-negative integrable functions. Finally, we applied our results  to the case of comonotone functions.

متن کامل

A Geometric Inequality with Applications

In this paper, we present a new geometric inequality which involves an arbitrary point in the plane of a triangle. A simpler proof of a known inequality with one parameter is obtained by using our result. We also derive the famous Sondat fundamental triangle inequality from it. Mathematics subject classification (2010): 51M16.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2013

ISSN: 1846-579X

DOI: 10.7153/jmi-07-51